2. Математические модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), широко использующих те или иные математические методы. Например, можно рассмотреть математическую модель звезды. Эта модель будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды. Математической моделью другого рода являются, например, математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия. Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.
Математическое моделирование - главная цель и основное содержание изучаемой дисциплины.
Математические модели могут быть:
- аналитическими;
- имитационными;
- смешанными (аналитико-имитационными).
Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.
Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.
Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.
Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.
Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.
Рассмотрим, в чем заключается отличие имитационных и аналитических моделей. В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ. В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.
Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием.
Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.
3. Информационные модели - класс знаковых моделей, описывающих информационные процессы (возникновение, передачу, преобразование и использование информации) в системах самой разнообразной природы.
Граница между вербальными, математическими и информационными моделями может быть проведена весьма условно; возможно, информационные модели следовало бы считать подклассом математических моделей. Однако, в рамках информатики как самостоятельной науки, отдельной от математики, физики, лингвистики и других наук, выделение класса информационных моделей является целесообразным. Информатика имеет самое непосредственное отношение и к математическим моделям, поскольку они являются основой применения компьютера при решении задач различной природы: математическая модель исследуемого процесса или явления на определенной стадии исследования преобразуется в компьютерную (вычислительную) модель, которая затем превращается в алгоритм и компьютерную программу.
Материальные модели основываются на чем-то объективном, существующем независимо от человеческого сознания (каких-либо телах или процессах). Материальные модели делят на физические (например, авто- и авиамодели) и аналоговые, основанные на процессах, аналогичных в каком-то отношении изучаемому (например, процессы в электрических цепях оказываются аналогичными многим механическим, химическим, биологическим и даже социальным процессам и могут быть использованы для их моделирования). Границу между физическими и аналоговыми моделями провести можно весьма приблизительно и такая классификация моделей носит условный характер.
Статьи по педагогике:
Правовое воспитание в условиях ДОУ
В связи с постоянными политическими, экономическими и социальными изменениями, которые происходят в современном российском обществе, особенно актуальными становятся проблемы связанные с нормативно-правовым регулированием деятельности и взаимоотношений живущих в нем людей. Одной из важнейших сфер де ...
Формирование представлений о множестве у детей четвертого года жизни
Цель: Разработать серию игр и игровых упражнений по формированию представлений о множестве у детей четвертого года жизни, апробировать их на практике. Задачи: 1. Подобрать и разработать серию игр и игровых упражнений по формированию у детей четвертого года жизни представлений о множестве 2. Апробир ...
Сущность отметки и оценки
Оценка и отметка имеют свои особенности и последствия. Например, оценка – это процесс оценивания, осуществляемый человеком, а отметка – это результат этого процесса. Отметка представляет собой результат оенки, она формальна, но, что она принесет ребенку, для которого она была выведена не известно и ...