На подготовительном этапе на основе движущихся моделей дети должны уяснить что значит двигаться навстречу друг другу и в противоположных направлениях. Необходимо познакомить детей с элементами чертежей к задачам на движение и научить их вычерчивать по условию задачи.
24 м ?, на 8 м <
? м
После такого предварительного знакомства вводится понятие "скорость". Беседа начинается с того, что есть предметы движущиеся и не движущиеся (дети приводят примеры). Опираясь на жизненный опыт детей, выясняем, что одни предметы движутся быстрее, другие медленнее.
Открываем таблицу на доске:
Пешеход — 5 км за 1 час |
5 км/ч |
Автомобиль — 80 км за 1 час |
80 км/ч |
Ракета — 6 км за 1 сек. |
6 км/с |
Черепаха — 5 м за 1 мин. |
5 м/мин |
В этом случае говорят, что скорость пешехода 5 км в час (показываем запись 5 км/ч) и т. д.
Скорость движения — это расстояние, которое проходит движущийся предмет за единицу времени (за 1 час, за 1 минуту, за 1 секунду).
- Проверим, как вы меня поняли. Скорость поезда 70 км/ч. Что это означает? (Поезд проезжает 70 км за 1 час.)
- Скорость мухи — 5 м/с — ?
- Скорость африканского страуса — 120 км/ч — ?
Задача. Велосипедист был в пути 3 ч и проехал за это время 36 км. В течение каждого часа он проезжал одинаковое расстояние. Сколько километров проезжал велосипедист в каждый час?
36 ч
Пояснить, что чёрточки означают количество часов.
36 : 3 = 12 (?)
Мы нашли, сколько километров проезжал велосипедист за каждый час, т. е. за 1 час или за единицу времени. Что же это за величина? (Скорость.) Как обозначим единицу измерения скорости? (км/ч)
36 : 3 = 12 (км/ч) V = S : t
скор .расст. вр.
Вывешивается формула и заучивается правило. На следующих уроках вводятся два других правила. После того, как дети выучат правила, задачи решаются в два и более действия; используется краткая запись в виде чертежа или таблицы.
Необходимо познакомить детей с понятием "общей скорости" (скорость сближения или удаления) и пояснить, что использование понятия "общая скорость" упрощает решение задач.
рис.2.
60 + 80 = 140 (км/ч) — общая скорость. На 140 км сблизятся машины за 1 час.
На 140 км удалились машины друг от друга за 1 час.
Чтобы дети уяснили решение задач через "общую скорость", нужно первые задачи разобрать от данных к вопросу.
— Известно "общее" расстояние 390 км и известно время — 3 ч. Что можно найти, зная расстояние и время?
— Если дано "общее" расстояние, то какую скорость мы найдём? (Найдём общую скорость.)
— Теперь, зная "общую скорость" и скорость первого автомобиля, что можно найти? (Скорость второго автомобиля.)
— Ответили мы на вопрос задачи? (Да.)
Весьма поучительно решение следующей четверки задач, исчерпывающих все возможные комбинации направлений движения двух тел относительно друг друга (рис.7). Вопрос для всех задач общий: через сколько секунд А и В окажутся рядом? Итак, дана задача: «Между двумя точками А и В имеются две дороги, длинная — 160 м и короткая — 80 м. Из этих точек движутся два велосипедиста со скоростями 5 и 3 м в секунду. Через сколько секунд они окажутся рядом? (Рассмотреть все возможные случаи.)»
Решение задачи удобно изобразить в матрице с двумя входами.
Подобная четверка задач позволяет рассмотреть исчерпывающим образом математическую ситуацию, перебирая все возможные сочетания направлений движения двух тел. При таком оформлении четверки задач информация о направлении движения передается на нескольких кодах: по горизонтальному входу матрицы показаны скорости велосипедиста А, по вертикальному входу матрицы показаны скорости велосипедиста В. Эти же скорости изображены и на самих рисунках в матрице. По этой схеме удобно проводить обучающую беседу, позволяющую добыть дополнительную информацию об изучаемом.
Вопрос. В каких клетках изображено движение в противоположных направлениях (навстречу»)? Ответ. Движение «навстречу» изображено в клетках правой диагонали (I и IV). Вопрос. В каких клетках изображено движение в одном направлении («вдогонку»)? Ответ. Движение вдогонку изображено в клетках левой диагонали (11 и III). Вопрос. Сравните задачи (II и III). В каком случае быстрее нагонит один велосипедист другого? Почему? Ответ. В первом случае, так как в этом случае первоначальное расстояние между велосипедистами – 80 м. во втором случае – больше (160 м).
Статьи по педагогике:
Организация и методика проведения экспериментальной работы
Цель исследовательской деятельности состояла в том, чтобы проверить достоверность выдвинутых нами теоретических положений, а именно, что возможно систематизация теоретического материала и эмпирического исследования позволит разработать и поэтапно реализовывать комплекс дидактических игр, направленн ...
Описание урока с использованием мультимедиа
Цели урока: познакомить учащихся со свойствами воды; учить определять по свойствам воды возможность употребления ее в пищу; при выполнении практической работы учить наблюдать, сравнивать, делать выводы; повторить значение экологически чистой воды для жизни всего живого на Земле. Оборудование: компь ...
План занятий математического кружка учащихся 6-х классов и методические
рекомендации к ним
Содержание занятий разработано из расчета одно занятие в две недели, что составляет 18 занятий за учебный год. План занятий математического кружка учащихся 6-х классов: задачи на делимость; признаки делимости на 3 и на 9; признаки делимости на 7, на 11, на 13; прямая и обратная пропорциональность; ...