Золотые фигуры

Страница 2

Существует гипотеза, что пентаграмму никто не изобретал, ее только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет, поэтому естественно предположить, что геометрический образ этих объектов – пентаграмма – стала известна раньше, чем "золотая" пропорция.

Рассмотрим теперь, как Евклид использует золотое сечение для построения угла равного 72о, именно под таким углом видна сторона правильного пятиугольника из центра описанной вокруг него окружности. Начнём с отрезка АВЕ, разделённого в крайнем и среднем отношении точкой В (рис.10).

Рис. 10

Проведём далее дуги окружностей с центрами в точках В и Е и радиусом АВ, пересекающиеся в точке С. Пусть АС = АЕ. Обозначим через α равные углы ЕВС и СЕВ. Так как АС = АЕ, то угол АСЕ равен α. Теорема о том, что сумма углов треугольника равна 180о, позволяет найти угол ВСЕ: он равен 180о - 2α, а угол ЕАС равен 3α - 180о. Но тогда угол АВС равен 180о – α, и, суммируя углы треугольника АВС, получаем:

180о = (3α - 180о) + (3α - 180о) + (180о – α),

откуда

5α = 360о и α = 72о.

Итак, каждый из углов при основании треугольника ВЕС вдвое больше угла при вершине, равного 36о. Следовательно, что бы построить правильный пятиугольник, необходимо лишь провести любую окружность с центром в точке Е, пересекающую сторону ЕС в точке Х и сторону ЕВ в точке Y: отрезок XY служит одной из сторон вписанного в окружность правильного пятиугольника; обойдя вокруг всей окружности, можно найти и все остальные стороны.

Число Ф, например, является отношением радиуса окружности к стороне правильного вписанного десятиугольника. Расположим три золотых прямоугольника (стороны которых находятся в золотом отношении) так, чтобы каждый симметрично пересекался с двумя другими (под прямым углом к каждому из них), видно, что вершины золотых прямоугольников совпадают с вершинами правильного икосаэдра и в то же время указывают положение центров 12 граней правильного додекаэдра. См. (приложение 2, 3)

Использование золотого сечения при решении задач на построение

Задача №1.

С помощью циркуля и линейки построить прямоугольник с отношением сторон 1 : ( – 1 ) / 2.

Решение

Поделим отрезок АВ точкой С в отношении золотого сечения. Из точки А восстановим окружность радиуса (– 1 ) / 2. Она пересекает перпендикуляр АК в точке D. Последующие построения очевидны. Они завершают чертёж прямоугольника АВЕD, отношение сторон которого 1 : (– 1 ) / 2.

Задача №2

Построить прямоугольник отношением сторон 1 : ( – 5 ) / 2.

Решение

Проводим отрезок АВ = 1, точкой С делим его в золотом отношении. Тогда АС = 1 - (– 1 ) / 2 = ( 3 -) / 2. Продолжим отрезок АВ за точку А, и из точки А проведём окружность радиуса АС. Пересечение с продолжением АВ будет точка D. Из точки В восстановим перпендикуляр ВМ к АВ. Строим окружность с центром в точке В радиусом ВD.

ВD = 1 + ( 3 -) / 2 = ( 5 -) / 2.

Окружность пересекает перпендикуляр ВМ в точке Е, длина стороны прямоугольника равна ( 5 -) / 2.

Задача №3

Построить правильный пятиугольник по данной стороне АВ = 1.

Страницы: 1 2 3

Статьи по педагогике:

Конструктивная деятельность учителя в структуре педагогической деятельности
Говоря о структуре педагогической деятельности, необходимо сказать, что все компоненты, или функциональные виды, деятельности проявляются в работе педагога любой специальности. Их осуществление предполагает владение педагогом специальными умениями. В отличие от принятого в психологии понимания деят ...

Профессиональное самоопределение
Профессиональное образование, выполняющее функции профессиональное подготовки, отождествляемое с понятием «специальное образование», предполагает 2 пути его получения – самообразование или обучение в образовательных учреждениях профессионального образования. Успех профессионального образования опре ...

Речевое развитие детей 6-7 лет
Речевая функция является одной из важнейших психических функций человека. По мнению Л.С. Волковой, в процессе речевого развития формируются высшие формы познавательной деятельности, способности к понятийному мышлению. Овладение способностью к речевому общению создает предпосылки для специфических ч ...

Категории

Copyright © 2019 - All Rights Reserved - www.eduguides.ru