Существует гипотеза, что пентаграмму никто не изобретал, ее только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет, поэтому естественно предположить, что геометрический образ этих объектов – пентаграмма – стала известна раньше, чем "золотая" пропорция.
Рассмотрим теперь, как Евклид использует золотое сечение для построения угла равного 72о, именно под таким углом видна сторона правильного пятиугольника из центра описанной вокруг него окружности. Начнём с отрезка АВЕ, разделённого в крайнем и среднем отношении точкой В (рис.10).
Рис. 10
Проведём далее дуги окружностей с центрами в точках В и Е и радиусом АВ, пересекающиеся в точке С. Пусть АС = АЕ. Обозначим через α равные углы ЕВС и СЕВ. Так как АС = АЕ, то угол АСЕ равен α. Теорема о том, что сумма углов треугольника равна 180о, позволяет найти угол ВСЕ: он равен 180о - 2α, а угол ЕАС равен 3α - 180о. Но тогда угол АВС равен 180о – α, и, суммируя углы треугольника АВС, получаем:
180о = (3α - 180о) + (3α - 180о) + (180о – α),
откуда
5α = 360о и α = 72о.
Итак, каждый из углов при основании треугольника ВЕС вдвое больше угла при вершине, равного 36о. Следовательно, что бы построить правильный пятиугольник, необходимо лишь провести любую окружность с центром в точке Е, пересекающую сторону ЕС в точке Х и сторону ЕВ в точке Y: отрезок XY служит одной из сторон вписанного в окружность правильного пятиугольника; обойдя вокруг всей окружности, можно найти и все остальные стороны.
Число Ф, например, является отношением радиуса окружности к стороне правильного вписанного десятиугольника. Расположим три золотых прямоугольника (стороны которых находятся в золотом отношении) так, чтобы каждый симметрично пересекался с двумя другими (под прямым углом к каждому из них), видно, что вершины золотых прямоугольников совпадают с вершинами правильного икосаэдра и в то же время указывают положение центров 12 граней правильного додекаэдра. См. (приложение 2, 3)
Использование золотого сечения при решении задач на построение
Задача №1.
С помощью циркуля и линейки построить прямоугольник с отношением сторон 1 : (
– 1 ) / 2.
Решение
Поделим отрезок АВ точкой С в отношении золотого сечения. Из точки А восстановим окружность радиуса (
– 1 ) / 2. Она пересекает перпендикуляр АК в точке D. Последующие построения очевидны. Они завершают чертёж прямоугольника АВЕD, отношение сторон которого 1 : (
– 1 ) / 2.
Задача №2
Построить прямоугольник отношением сторон 1 : (
– 5 ) / 2.
Решение
Проводим отрезок АВ = 1, точкой С делим его в золотом отношении. Тогда АС = 1 - (
– 1 ) / 2 = ( 3 -
) / 2. Продолжим отрезок АВ за точку А, и из точки А проведём окружность радиуса АС. Пересечение с продолжением АВ будет точка D. Из точки В восстановим перпендикуляр ВМ к АВ. Строим окружность с центром в точке В радиусом ВD.
ВD = 1 + ( 3 -
) / 2 = ( 5 -
) / 2.
Окружность пересекает перпендикуляр ВМ в точке Е, длина стороны прямоугольника равна ( 5 -
) / 2.
Задача №3
Построить правильный пятиугольник по данной стороне АВ = 1.
Статьи по педагогике:
Сравнительный анализ урока с использованием мультимедиа с
традиционным уроком
В экспериментальном классе по сравнению с контрольным урок прошел динамичней и непринужденней, у учащихся 3а класса наблюдался повышенный интерес к новой теме. Таблица 1 Количественные показатели инициативности учащихся в контрольном и экспериментальном классах В экспериментальном классе В контроль ...
Процесс обучения учащихся
в учреждениях начального профессионального образования
Об обучении написано и сказано много: оно и «протекает», и «осуществляется», и «реализуется», оно и «передача» человеку определенных знаний, умений, навыков; оно и «целенаправленное взаимодействие преподавателя и учащихся», в ходе которого решаются задачи образования учеников, «целенаправленный пед ...
Содержание и технологии формирования экологической культуры родителей путем
использования интернет - ресурсов
Экологическая культура должна занимать одно из центральных мест в воспитании подрастающего поколения посредством формирования личности или отдельных ее качеств в соответствии с идеалом, который нам задает общество. Уровень экологической культуры должен характеризоваться усвоением научных знаний, сф ...