Существует гипотеза, что пентаграмму никто не изобретал, ее только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет, поэтому естественно предположить, что геометрический образ этих объектов – пентаграмма – стала известна раньше, чем "золотая" пропорция.
Рассмотрим теперь, как Евклид использует золотое сечение для построения угла равного 72о, именно под таким углом видна сторона правильного пятиугольника из центра описанной вокруг него окружности. Начнём с отрезка АВЕ, разделённого в крайнем и среднем отношении точкой В (рис.10).
Рис. 10
Проведём далее дуги окружностей с центрами в точках В и Е и радиусом АВ, пересекающиеся в точке С. Пусть АС = АЕ. Обозначим через α равные углы ЕВС и СЕВ. Так как АС = АЕ, то угол АСЕ равен α. Теорема о том, что сумма углов треугольника равна 180о, позволяет найти угол ВСЕ: он равен 180о - 2α, а угол ЕАС равен 3α - 180о. Но тогда угол АВС равен 180о – α, и, суммируя углы треугольника АВС, получаем:
180о = (3α - 180о) + (3α - 180о) + (180о – α),
откуда
5α = 360о и α = 72о.
Итак, каждый из углов при основании треугольника ВЕС вдвое больше угла при вершине, равного 36о. Следовательно, что бы построить правильный пятиугольник, необходимо лишь провести любую окружность с центром в точке Е, пересекающую сторону ЕС в точке Х и сторону ЕВ в точке Y: отрезок XY служит одной из сторон вписанного в окружность правильного пятиугольника; обойдя вокруг всей окружности, можно найти и все остальные стороны.
Число Ф, например, является отношением радиуса окружности к стороне правильного вписанного десятиугольника. Расположим три золотых прямоугольника (стороны которых находятся в золотом отношении) так, чтобы каждый симметрично пересекался с двумя другими (под прямым углом к каждому из них), видно, что вершины золотых прямоугольников совпадают с вершинами правильного икосаэдра и в то же время указывают положение центров 12 граней правильного додекаэдра. См. (приложение 2, 3)
Использование золотого сечения при решении задач на построение
Задача №1.
С помощью циркуля и линейки построить прямоугольник с отношением сторон 1 : (
– 1 ) / 2.
Решение
Поделим отрезок АВ точкой С в отношении золотого сечения. Из точки А восстановим окружность радиуса (
– 1 ) / 2. Она пересекает перпендикуляр АК в точке D. Последующие построения очевидны. Они завершают чертёж прямоугольника АВЕD, отношение сторон которого 1 : (
– 1 ) / 2.
Задача №2
Построить прямоугольник отношением сторон 1 : (
– 5 ) / 2.
Решение
Проводим отрезок АВ = 1, точкой С делим его в золотом отношении. Тогда АС = 1 - (
– 1 ) / 2 = ( 3 -
) / 2. Продолжим отрезок АВ за точку А, и из точки А проведём окружность радиуса АС. Пересечение с продолжением АВ будет точка D. Из точки В восстановим перпендикуляр ВМ к АВ. Строим окружность с центром в точке В радиусом ВD.
ВD = 1 + ( 3 -
) / 2 = ( 5 -
) / 2.
Окружность пересекает перпендикуляр ВМ в точке Е, длина стороны прямоугольника равна ( 5 -
) / 2.
Задача №3
Построить правильный пятиугольник по данной стороне АВ = 1.
Статьи по педагогике:
Изучение и обобщение опыта работы лучших учителей русского языка по рассматриваемой
проблеме
Большое место в работе каждого словника занимает словарная работа. Программа предусматривает усвоение определенного количества слов в каждом классе. Эти слова выносятся со всех учебниках на полях или заключаются в рамки. Работа с этими словами дает возможность расширит активный словарный запас учащ ...
Психофизиологические особенности учащихся среднего школьного возраста
В своем развитии ребенок проходит ряд этапов, или возрастных периодов, а именно: младенчество (от рождения до одного года); раннее детство (от 1 года до 3 лет); дошкольный возраст (от 3 до 7 лет); младший школьный возраст (от 7 до 10-11 лет); подростковый, или средний школьный возраст (от 10-11 до ...
Содержание занятий математического кружка в 6-ом классе
Занятие №1. «Задачи на делимость». 1. Мужичок привез продавать фуки, глюки и друки. Пройдясь по рынку, он решил увеличить им цену, добавив еще по одному нулю, но не в конце, а в середине чисел. В результате цена за один фук увеличилась в 6 раз, за глюк – в 7 раз, а за друк – в 9 раз. Сколько они ст ...